Electroendocytosis Is Driven by the Binding of Electrochemically Produced Protons to the Cell’s Surface

نویسندگان

  • Nadav Ben-Dov
  • Inna Rozman Grinberg
  • Rafi Korenstein
چکیده

Electroendocytosis involves the exposure of cells to pulsed low electric field and is emerging as a complementary method to electroporation for the incorporation of macromolecules into cells. The present study explores the underlying mechanism of electroendocytosis and its dependence on electrochemical byproducts formed at the electrode interface. Cell suspensions were exposed to pulsed low electric field in a partitioned device where cells are spatially restricted relative to the electrodes. The cellular uptake of dextran-FITC was analyzed by flow cytometery and visualized by confocal microscopy. We first show that uptake occurs only in cells adjacent to the anode. The enhanced uptake near the anode is found to depend on electric current density rather than on electric field strength, in the range of 5 to 65 V/cm. Electrochemically produced oxidative species that impose intracellular oxidative stress, do not play any role in the stimulated uptake. An inverse dependence is found between electrically induced uptake and the solution's buffer capacity. Electroendocytosis can be mimicked by chemically acidifying the extracellular solution which promotes the enhanced uptake of dextran polymers and the uptake of plasmid DNA. Electrochemical production of protons at the anode interface is responsible for inducing uptake of macromolecules into cells exposed to a pulsed low electric field. Expanding the understanding of the mechanism involved in electric fields induced drug-delivery into cells, is expected to contribute to clinical therapy applications in the future.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction Studies of Sodium N-Dodecyl Sulphate and Protons to Nistone H1

The relationship between the binding of sodium n-dodecyl sulphate and protons to histone H1 has been investigated by equilibrium dialysis and titrimetry. The data cover the pH range 3.2-10 and surfactant concentrations up to 3.0×10-3 mol dm-3. A theoretical approach based on the binding potential concept of Wyman is presented and has been used to make estima...

متن کامل

Designing an approprate solenoid and magnetic field for the HZDR laser-driven beamline

Nowadays, due to the high costs and large dimensions of the conventional proton accelerators, other optimal methods for producing the proton beam have been studied. Using of Laser-driven proton accelerators is one of the important and new methods. In laser-driven ion acceleration, a highly ultra-intense laser pulse interacts with solid density targets and will create a plasma media that will ac...

متن کامل

Kinetic study of CO desorption from cathodic electrochemically treated carbon paper supported Pt electrodes

Platinum particles were grown directly by an electrodeposition process on electrochemically treated carbon paper (CP) for kinetic study of carbon monoxide (CO) desorption. The treatment on CP was performed by applying −2 V for cathodic oxidation over 5 min. Treated CP was characterized by FTIR to investigate the oxygen groups on its surface. CO surface coverage at each temperature was determine...

متن کامل

Velocity Inversion with an Iterative Normal Incidence Point (NIP) Wave Tomography with Model-Based Common Diffraction Surface (CDS) Stack

Normal Incidence Point (NIP) wave tomography inversion has been recently developed to generate a velocity model using Common Reflection Surface (CRS) attributes, which is called the kinematic wavefield attribute. In this paper, we propose to use the model based Common Diffraction Surface (CDS) stack method attributes instead of data driven Common Reflection Surface attributes as an input data p...

متن کامل

A Thermodynamic Study of the Interaction between Urease and Copper Ions

A thermodynamic study of copper ions by jack bean urease (JBU) was carried out at two temperatures of 27 and 37?C in Tris buffer (30 mM; pH=7.0) using an isothermal titration calorimetry. There is a set of twelve identical and non-interacting binding sites for copper ions. The intrinsic dissociation equilibrium constant and the molar enthalpy of binding are 285 µM and ?15.2 kJ/mol at 27?C and 3...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012